算力不能被壟斷!多所大學研究者呼籲:要填上AI中的計算鴻溝

當我們已經對充斥生活方方面面的AI技術習以為常時,有時候卻會忽略一個問題,為什麼那些應用和軟件都來自於那“幾個公司”?

據新財富統計的中國前30大APP,7成隸屬阿里或騰訊旗下,兩家公司分別都已構建起十萬億投資帝國,分割中國應用生態市場,試圖負責中國人民的“衣食住行”;而在美國,從IBM到微軟、谷歌,壟斷傳聞頻頻爆出……而這些公司業務的快速擴張和地位的不斷提升都離不開背後的AI力量,不到十年的時間過去,AI卻似乎從學術屆的“白月光”變成了科技巨擎之間角力的砝碼,有著普通企業不能承受的“千鈞之重”。

這種AI創新“貧富分化”的背後,是算力的不平等,是只有大公司和名牌強校才能承擔得起的研究成本。

近日,弗吉尼亞理工大學和加拿大西安大略大學的研究人員Nur Ahmed和Muntasir Wahed就算力加劇AI研究不平等的問題進行研究,並在arXiv發表了題為《人工智能的非民主化:深度學習與人工智能研究中的計算鴻溝(The De-democratization of AI:DeepLearning and the Compute Divide in Artificial Intelligence Research)》的論文,該論文從頂會論文發表、研究資金投入和科研人才流動等方面解釋了AI研究不平等的產生。

論文鏈接:https://arxiv.org/abs/2010.15581

一、名校大廠強強合作,頂會論文佔半壁江山

在論文中,研究團隊調研了從2000到2019年,包括ACL、ICML和NeurIPS在內57個頂會中涵蓋計算機視覺、數據挖掘、機器學習和自然語言學習等領域的171394篇論文。

▲2000-2019,一個會議年中各學術機構平均採納論文數

從上圖可以看出,QS前五十的學校和AI公司是AI頂會中的主力軍。

在一個會議年的903篇論文中,QS前五十的學校平均發表66篇頂會論文,是第二、三檔學校(QS51-100、QS101-200)的近乎兩倍,而AI相關公司也勇奪第二,平均發表約42篇論文。

▲2000-2019年,各頂會中校企合作論文比例

而近年來,AI領域校企合作的這股“大風”,也可以從論文合作的數目中很明顯地看出來。

各領域校企合作論文的比例都有不同程度的上漲,其中KDD(數據挖掘頂級會議)中合作論文在2020年比例超過50%,ICCV(國際計算機視覺大會)達到45%。

無論是數據挖掘,還是計算機視覺,深度學習都是其中很重要的一部分,而這時候,頂級大學和公司的資金優勢就不言而喻了,畢竟訓練像AlphaGo Zero和GPT-3這樣的大型模型需要價值數百萬美元的計算資源。

根據2019年年度AI研究排名,斯坦福大學、MIT、卡內基梅隆大學,加州大學伯克利分校和微軟列為領先AI研究會議的六大貢獻者。

二、學術界人才流失,計算鴻溝問題初現

規模較小的學校通常也缺乏資金支持來發展前沿科技,而這時,科技巨頭通過向AI研究投入大量資金和高額薪酬,將學術界人才納入麾下,加速了學術界人才的流失。

論文中也證實了這種人才流動導致的科技水平變化,自深度學習興起以來,QS 301-500的大學在頂會中的論文平均減少了六篇,比預期少了25%,而世界500強、科技巨頭和頂尖大學論文發表情況卻截然不同。

論文作者Nur Ahmed和Muntasir Wahed表示:“就我們所知,這篇論文首次證實了資金、設備等因素對AI領域企業和學校產生的巨大影響。我們認為深度學習的興起極大地提高了計算能力和數據的重要性,進而通過增加成本而提高了准入門檻。”

在分析AI領域趨勢時,Nur Ahmed和Muntasir Wahed將人工智能的發展歷史劃分為兩個階段。第一個階段是從1960年代到2012年左右,那時使用通用的硬件來訓練AI;在2012年後即是第二個階段,深度學習和如GPU等專門設計的硬件重新定義了AI。 Continue reading

華為以151億美元的價格出售榮耀手機業務

據報導,華為將斥資1000億人民幣(合151億美元)出售旗下的智能手機品牌——榮耀。路透社稱,買家是由數字中國集團和科技投資公司牽頭的財團,買家的背後支持者是華為總部所在地深圳的市政府。

如果消息是準確的,這個價格遠遠超過了數字中國集團上個月提出的150-250億元人民幣(23-38億美元)的報價,該集團是榮耀智能手機的主要經銷商。

據小道消息稱,這筆交易幾乎囊括了榮耀所有的資產,包括品牌、研發能力和供應鏈管理。

如果交易順利進行,數字中國集團顯然將成為被出售實體榮耀終端有限公司的"前兩大股東",持股比例接近15%。榮耀終端有限公司成立於今年4月,是華為旗下的一個子公司。

據知情人士透露,其他股東將是"至少三家"得到深圳政府支持的投資公司,每個公司擁有10%-15%的股權。

報導稱,數字中國集團計劃用銀行貸款為此次收購融資。該公司在2001年從聯想分拆之後,在香港證券交易所上市。

關於此次出售背後的說法是,以美國為首的對華為供應鏈的壓迫使華為放棄利潤已經微薄的低端智能手機業務,轉而專注於高端手機和麵向企業的業務。值得一提的是,被收購的榮耀不會再受到美國對華為的製裁。

關於華為出售榮耀業務的這個可能,有人覺得這不是個正確的決定。路透社引用市場研究公司Canalys負責移動業務的副總裁Nicole Peng表示:"考慮到榮耀品牌與華為智能手機產品的高度互補性,這似乎是一個激烈的舉措。"

但是,消息稱買家已經有了退出策略。該計劃顯然是在三年內上市,同時保留大部分管理團隊和七千多名員工。

T-Mobile, Verizon, U.S. Cellular認可5G固定無線網絡

根據5G行業的一些大公司稱,固定無線網絡服務正在以一種快速的方式增長。

“我們已經為數百萬在競爭中服務不足的客戶提供了T-Mobile家庭互聯網接入服務。但我們才剛剛開始。正如我們在與Sprint合作的頭幾個月所看到的,我們的合併網絡將繼續為我們的客戶釋放利益,為不久將5G引入家庭互聯網打下基礎,"Dow Draper說,他是Sprint前高管,現在是T-Mobile新興產品的執行副總裁。

T-Mobile最近在2000萬美國家庭中推出了基於4G的固定無線接入(FWA)服務;週一,該公司將該服務擴展到9個州的130個城鎮。 (該公司職員表示,這一擴張覆蓋了"數百萬"戶家庭,但沒有提供具體細節。)

明年,T-Mobile表示將推出5G版本的服務,並表示到2027年,該服務將覆蓋50%的美國家庭。

帕特森諮詢集團(Patterson Advisory Group)的顧問吉姆·帕特森(Jim Patterson)在每週的時事通訊中寫道:"我們的有線電視提供商一直在努力保持變焦視頻的工作(以至於我通過手機而不是電腦訪問音頻)。他說,他轉而使用T-Mobile新推出的4G固定無線服務,現在支持在電視、智能手機和筆記本電腦上播放流媒體,速度在50-70Mbit/s之間。

他還指出,T-Mobile可能很快推出新的新媒體電視套餐,以折扣價提供移動、電視和固定互聯網服務。

“洋紅色(T-Mobile的公司顏色)會不會像15年前時代華納(timewarner)、考克斯(Cox)和Cablevision(Cablevision)那樣,對有線電視使用同樣的捆綁工具?"他寫道。 “誰會先到那裡?有吸引力的家庭計劃定價的有線電視,還是集成到2-3億個POP中的2.5GHz的T-Mobile[存在點,人口測量]?這可能是2021年最重要的問題之一。"

Verizon的5G FWA接收效果不一

Verizon也在通過4G和5G拓展FWA業務。該公司於2018年推出了毫米波(mmWave)頻段的5G產品,但近幾個月來,由於增加了支持更強大的客戶樓宇設備(CPE)的新芯片組,Verizon開始擴大覆蓋範圍。該公司CEO最近形容5G家庭是一項"變革性業務"

然而,對新更新的服務的測試似乎好壞參半。例如,PCMag報告說,Verizon只向芝加哥和明尼阿波利斯的少數客戶提供5G家庭發射機,這種情況似乎沒有反映出高通公司為運營商的CPE開發的新芯片組所支持的更廣泛的覆蓋範圍。

然而,信號研究小組的邁克·泰蘭德說,他最近在明尼蘇達州的明尼阿波利斯聖保羅地區測試了這項服務,發現Verizon能夠使用約400MHz的毫米波頻譜,在大約1公里的距離內傳輸1到2千兆比特/秒,包括在視線和非視線配置中。

“大功率CPE是一個巨大的遊戲規則改變要素,"Thelander在LinkedIn上寫道。

不走尋常路

事實上,由更強大的固定5G服務支持的更廣泛的覆蓋範圍也可能對農村市場產生影響。例如,美國蜂窩首席執行官勞倫特·瑟里維爾(Laurent Thrivel)指出,該運營商最近與愛立信(Ericsson)和高通公司(Qualcomm)的合作夥伴通過毫米波連接實現了100兆位/秒的速度。

“這充分說明了我們將能夠為北美農村地區提供的各種服務,"他在公司的季度電話會議上說,根據Seeking Alpha的記錄。他說,運營商將在明年第一季度開始對這項服務進行更廣泛的測試,不過他並沒有承諾在商業上廣泛推廣這項技術。

U.S. Cellular並不是唯一一家在農村地區尋找5G固定互聯網服務的公司。例如,《華爾街日報》最近報導了威斯康星州西南部的一家固定無線互聯網提供商WiConnect Wireless,該公司有9名員工為7個縣的1400個農村家庭提供5G固定無線互聯網連接服務。

WiConnect的davidbangert告訴該雜誌,該公司的傳輸站點通常位於糧倉頂部,每個站點的成本約為20000美元,每個站點連接大約25個家庭。他說,該公司可以提供約25mbit/s的速度,每月79-99美元。

對5G固定無線技術的投資是否會影響現有的有線互聯網服務提供商?有些人不這麼認為。

“他們談論的速度並不是讓我們擔心的問題,但我們永遠不會把它們算在內,"有線電視一號首席執行官茱莉亞·勞利斯(Julia Laulis)在公司季度電話會議上被問及T-Mobile的固定無線產品時表示我們認為,我們有一種競爭心態,我們可靠的產品和高於平均水平的服務將為我們提供良好的服務。 "

然而,值得注意的是,Cable One最近收購了兩家農村固定無線互聯網提供商的股份:Wisper的40%和NextLink不到10%的股份。

Open RAN之RU、DU、CU: Why?What?When? How?

功能拆分放到現在來說並不是什麼新鮮事了,其概念最初在3GPP R14中就提及過,3GPP R15發布了定義,並引入了新的術語、接口和功能模塊。但是在Open RAN中,為什麼RU、DU、CU功能拆分的概念變得如此重要?

Why
以前的RAN體系結構(2G、3G和4G)是基於“monolithic”構建塊,邏輯節點之間很少發生交互。然而,在新的無線電(NR)研究的最初階段,人們認為在中央單元(CU)和分佈式單元(DU)之間劃分gNB(NR邏輯節點)可以帶來靈活性。

靈活的硬件和軟件允許進行可擴展的、低成本的網絡部署,但前提是硬件和軟件組件可以互操作並且可以與不同供應商進行混合和匹配。分離式架構(中央和分佈式單元之間)允許協調性能特性、負載管理、實時性能優化,並能夠適應各種用例和需要支持的QoS(即遊戲、語音、視頻)。

為什麼Open RAN要採用分離式架構?下圖展示了當前的業界看法,諾基亞認為唯一有效的劃分是在RU和DU之間,並表示時間將證明一個供應商的DU與另一供應商的CU的集成是否會帶來靈活性和低成本。

結論:如果硬件和軟件組件之間的接口是開放的,功能拆分將會節省成本。

What
在5G RAN架構中,BBU功能分為兩個功能單元:負責處理對實時性較高的分佈式單元(DU),以及負責處理非實時、RRC、PDCP等高層協議的中央單元(CU)。

在5G C-RAN中,DU的服務器和相關軟件可以託管在站點本身,也可以託管在邊緣雲(數據中心或中央辦公室)中,具體取決於傳輸的可用性和前傳接口。 CU的服務器和相關軟件可以與DU放在同一位置,也可以託管在區域雲數據中心中。 DU和RU之間的實際劃分可能會根據具體的用例和實現而有所不同。

RU:一個負責處理DFE和部分PHY層功能的無線電單元,其設計的關鍵考慮因素是尺寸、重量和功耗。

DU:靠近RU的分佈式單元,主要處理RLC、MAC和部分PHY層功能。該邏輯節點包括eNB/gNB功能的子集,具體取決於功能拆分選項,其操作由CU控制。

CU:負責處理RRC、PDCP等高層協議的中央單元。 gNB由一個CU和一個DU組成,分別通過CP和UP的Fs-C和Fs-U接口連接到CU。具有多個DU的CU將支持多個gNB。分離架構使5G網絡能夠根據中傳可用性和網絡設計,在CU和DU之間利用不同的協議棧分佈。 CU可以通過中傳接口對多個DU進行集中式管理。

集中式基帶部署允許在不同RU之間進行負載平衡,這就是為什麼在大多數情況下,DU將與RU搭配以執行所有密集處理任務。以邊緣為中心的基帶處理可提供低延遲、具有實時干擾管理的無縫移動性和最佳資源優化。

業界認為連接RU和DU的底層接口是eCPRI,以提供最低的延遲,前傳延遲被限制為100微秒。

需要注意的是,DU / CU拆分幾乎不受基礎設施類型的影響。新的接口主要是DU和CU之間的F1接口,它們需要能跨不同的供應商互操作,以真正實現Open RAN。中傳(Midhaul)將CU與DU連接起來。

4G / 5G核心通過回傳(Backhaul)連接到CU,5G核心距離CU最多可以200公里。

How
對於延遲敏感的服務,基於適當的前傳可用性,MAC-PHY拆分是首選解決方案。 Option 7 split架構中,DU處理RRC Continue reading

AI教父”Geoffrey Hinton:GPT-3遠不如人類大腦

自從上個世紀八十年代起,“AI 教父”杰弗裡・辛頓(Geoffrey Hinton)就一直在從事有關深度學習的研究。然而,研究成果卻受到缺乏數據以及計算機功能不足的限制。不過,他對這項技術的執著態度最終還是給人類帶來了巨大的益處。在第四屆 ImageNet 大賽上,幾乎每支團隊都用上了深度學習技術,並且達到了驚人的準確率。不久之後,深度學習不僅在圖像識別任務中得到了應用,還被廣泛地應用於其它領域。

30 年前,人們都覺得提出的神經網絡的想法是離經叛道。但辛頓表示,現在幾乎所有人都認同了他的想法。

對於人工智能領域短板的看法,辛頓說:“很多概念性的突破必將接踵而至,但我們同樣也需要進行大規模且有成效的性能提升。”

對於神經網絡不足之處的看法,辛頓說:“含有大量突觸的神經網絡非常善於處理數據量較小的任務,但是人類自己在這方面更勝一籌。”

對於人類大腦工作方式的看法,辛頓說:“人的大腦內遍布神經活動的重要載體。”

現代人工智能革命起源於一場不起眼的研究競賽。在 2012 年的第三屆 ImageNet 大賽上,參賽團隊要設計出一種能夠識別 1000 種事物的計算機視覺系統,這些事物包括動物、自然景觀以及人類等。

在最初的兩屆比賽中,最優秀團隊的準確率也達不到 75%。但在第三年,一名教授和他的兩個學生卻在短時間內突破了技術的天花板。他們以令人震驚的 10.8 個百分點贏得了比賽。這名教授就是杰弗裡・辛頓,而他們所使用的技術被稱作深度學習。

去年,鑑於辛頓對人工智能領域的開創性貢獻,他與揚・勒丘恩、約書亞・本吉奧等人工智能先驅一道被授予圖靈獎。 10 月 20 日,本文作者 Karen Hao(凱倫·郝)與辛頓在《麻省理工科技評論》雜誌的全球新興科技峰會上,就人工智能領域的現狀以及未來的發展方向進行了交流。

Karen Hao:您為何如此確信深度學習將會復制人類的智慧?

Geoffrey Hinton:我確實相信深度學習能做任何事,但目前還需要取得一些概念性突破才能實現這一點。例如,2017 年阿施施・瓦斯瓦尼等人的論文介紹了一種轉換器,它可以很好地表達詞語的意思。這就是一種概念性突破。現在,幾乎所有功能較為強大的自然語言處理系統都在使用這種技術。我們需要更多像這樣的突破性技術。

Karen Hao:如果我們取得了這樣的技術突破,那麼深度學習會接近於人類的智能嗎?

Geoffrey Hinton:是的。當神經活動的重要載體可以進行像推理這樣的行為時,意味著我們已經取得了非常重要的突破。但在規模上,我們仍然需要獲得巨大的提升。人腦約有 100 Continue reading

霧計算在物聯網中的應用

霧計算是指一種分散的計算結構。資源(包括數據和應用程序)被放置在數據源和雲之間的邏輯位置。霧計算的優點之一是可以在同一時間上維持多用戶連接的狀態。本質上,它提供了與基於雲的解決方案相同的網絡和服務,但是它增加了分散網絡的安全性。

雲計算和霧計算的不同

雲計算

雲計算是一種提供分佈式計算和存儲資源的網絡,計算可以在各種平台上進行,包括公有云和私有云。

雲計算平台提供了在一個可擴展的系統上在用戶之間共享和混合工作負載的機會。雲計算本質上是異地存儲和恢復數據的能力。

雲計算是傳統手機變得"智能"的主要原因之一,手機沒有足夠的內置空間來存儲訪問應用程序和服務所需的數據。所有的數據都在雲端和雲端之間傳輸,以提供我們需要的服務。儘管如此,雲計算技術仍然有一個挑戰——帶寬限制。

霧計算

在霧計算中,數據、(數據)處理和應用程序集中在網絡邊緣的設備中,霧計算的主導地位將由一種需要手機更靠近數據源(用戶設備)的數據驅動。設備不需要在雲中執行必要的處理,並且設備會受到物理限制(低功耗和小尺寸)。

本地處理數據的能力比過去更加重要,因為霧計算增加了數據的安全性。隨著物聯網的發展,越來越多的設備被添加到網絡中。每個設備都被無線連接以進行數據傳輸和接收。

霧計算是關於如何有效地存儲和訪問數據。霧計算是指分散在網絡中的邊緣計算節點的網絡化,這樣它們可以在不同地點上分佈,但仍然在這些節點之間提供有組織的通信。

霧計算的使用涉及到一個複雜的邊緣設備互連過程。邊緣設備包括傳感器、存儲系統和網絡基礎設施,它們一起工作來捕獲和分發數據。

然而,霧計算的靈活性及其從集中云和網絡邊緣設備收集和處理數據的能力,使其成為處理我們今天面臨的信息過載最有用的方法之一。

霧計算和邊緣計算是一樣的嗎?

霧計算也可以稱作邊緣計算。邊緣計算的目的是通過將數據存儲到離"地面"更近的地方來解決問題。換句話說,邊緣計算將數據存儲在存儲設備和本地計算機中,而不是通過雲中集中的DC運行所有的數據。

從本質上講,霧計算負責允許快速響應的時間,減少網絡延遲和流量,並支持主幹網寬帶節約,以實現更好的服務質量。它還負責將相關數據傳輸到雲端。

據IDC估計,到2025年底,全球約45%的數據將轉移到網絡邊緣。據稱,霧計算是未來幾年可以與人工智能、5G和物聯網帶來變革性影響的技術。

IDC的另一項研究預測,到2020年,邊緣設備會產生全球10%的數據。邊緣設備將推動對霧計算更有效解決方案的需求,從而減少延遲的出現。

邊緣計算

邊緣計算本質上算是霧計算的一個子集,它會處理在它附近出現的數據。而霧計算允許更有效的數據處理,從而減少數據延遲的可能性。

將霧計算視為處理數據從生成地到存儲地的方法。邊緣計算僅指在數據生成地附近處理數據,霧計算封裝了邊緣處理和將數據從邊緣傳輸到其末端所需的網絡連接。

通過邊緣計算,物聯網設備與可編程自動化控制等設備連接。自動化控制器執行數據處理、通信和其他命令。使用霧計算,數據從端點傳輸到網關,然後將數據傳輸到數據源進行處理並返回傳輸。不同地點上分佈的基礎設施與雲服務相結合,以最小的延遲實現數據分析。

霧計算和邊緣計算都有助於更快地將數據轉化為可視化操作,以便用戶能夠更快、更明智地做出決策。霧計算和邊緣計算允許公司更有效地使用寬帶,同時增強安全性和解決隱私問題。由於霧計算的節點可以安裝在任何有網絡連接的地方,霧計算在工業物聯網的應用中也越來越受歡迎。

霧計算在物聯網中的應用

當設備或應用程序生成或收集大量信息時,數據存儲變得越來越複雜。在處理這些數據時,網絡寬帶也變得昂貴,需要大量數據中心來存儲和共享信息。

霧計算已經成為傳統數據處理方法的一種替代方法。霧計算收集和分配計算、存儲和網絡連接的資源和服務。它顯著降低了能耗,最大限度地減少了空間和時間的複雜性,並最大限度地提高了數據的效用和性能。

1、智慧城市

以智慧城市為例,數據中心的建設並不是為了滿足智能城市應用的需求。城市中所有物聯網設備傳輸、存儲和訪問的數據量不斷增加,需要一種新的基礎設施來處理這些數據量。正是這些應用需要霧計算來提供物聯網所需的應用價值。

2、公共事業

智能城市中的水務、醫院、執法、交通和應急管理應用程序需要最新的數據和技術來提供信息和服務,以支持其運營。

有關漏水、碳排放、坑洞或損壞的信息可用於更新計費信息、改進運營、拯救生命和提高效率。捕獲和分析這些數據可以直接應用到智能城市的應用程序中。

霧計算是一種部署物聯網網絡的方法,它們可以提供最佳的投資回報。

使用霧計算的益處

霧計算可以用於處理大量數據、網絡事務和快速處理的應用程序。使用霧計算的好處包括實時、混合和自主的數據中心,可以提高操作效率和安全性。此外,霧計算可以幫助確保系統保持可用和優化,而無需在電源、數據中心安全性和可靠性方面進行投資。

霧計算通過集中在多個節點上的計算資源來降低開銷成本。根據節點的位置和使用效率選擇光纖陀螺。它還減輕了組織數據中心的負擔。數據流量的減少是霧計算的另一個主要優勢。

許多公司正在使用霧計算來部署分佈在許多地方的軟件應用程序。公司在一個網絡上部署許多系統以獲得更好的效率和可訪問性。

從根本上說,霧計算使組織在最需要處理數據的地方有更大的靈活性。對於某些應用,數據處理應盡可能快,例如,在製造業中,連接的機器應盡快對事故做出響應。

霧計算還可以為公司提供一種簡單的方法,實時了解他們的客戶或員工在做什麼。隨著霧計算的實施,企業可以期望利用物聯網技術抓住新的機遇,增加利潤。但除此之外,這項技術還有可能為政府、公司甚至個人用戶節省大量資金。

最後

隨著雲技術不斷滲透到企業環境中,霧計算的使用也將繼續增加。雲計算通過一個彈性計算基礎設施來分配計算工作負載,從而能夠在雲中實時處理數據。

邊緣計算是物聯網霧計算領域的一個主要關注領域。邊緣計算是一種將計算資源部署在網絡邊緣、雲端之外的技術。它允許訪問、分析網絡邊緣的計算資源,然後將其發送回網絡邊緣。這允許實時處理數據。

霧計算解決方案將使公司能夠在物聯網中實現實時計算。因此,物聯網霧計算市場將成為雲計算市場的主要貢獻者。

雲計算原生的真正含義是什麼

今年發生的冠狀病毒疫情年加速了向雲計算的轉變,但是自2000年以來,企業一直在向基於雲的解決方案過渡。

早期遷移到雲平台的過程主要是“轉移”,該術語描述瞭如何將應用程序和數據轉移到雲中而無需停止重新設計應用程序、操作流程和工作方式。另外,它可能是一個業務部門嘗試使用新的SaaS工具。

這些通常可以節省成本或實現本地價值,但也會造成破壞,並沒有產生真正的變革或將組織轉變為“雲原生”的影響。

成為雲原生公司意味著什麼?為什麼要顛覆?

使用Cynefin框架中的定義,在這個複雜的世界中,企業製定了年度計劃和戰略,每個人都了解其工作方式的一切;事情可能很困難,但是解決問題的方法是可以理解並可以計劃的。但是,在當今瞬息萬變,更加複雜的世界中,工作方式需要改變,需要更快地前進。規劃必須更定期地進行,也許按季度而不是按年度進行,並且必須更適應所需的指導和行動。

成為一個適應性強的組織意味著您可以在復雜的世界中蓬勃發展。它涉及感知和響應企業的市場正在做的事情,激發並聆聽它的所作所為,然後最終調整您的方向。然後必須迭代且連續地完成它。

成為“雲原生”有助於消除限制,使企業更具適應性。這意味著將基礎設施和應用程序從舊版IT堆棧遷移到雲中可用的新功能。雲原生技術支持適應性。他們可以迅速進行變革,並且您可以更有效地將技術創新與業務創新聯繫起來。

除了技術之外,當今大多數組織都在努力適應變化,甚至大型變化計劃也常常會抵制真正敏捷所需要的東西,因為這可能會讓人感到不舒服。為此,企業需要對組織結構和治理、流程和工作方式以及支持技術進行不同的思考。

做出改變

企業中的雲計算現代化始於兩個地方之一,儘管有時兩個地方都有。它可以從IT部門以成本驅動的業務案例開始,例如現有的數據中心。或者它可以從一個業務部門中的業務實驗開始,或者有時可以加入許多實驗以推動業務的更大變化。為了實現完全的雲驅動轉換,需要將IT轉換和業務實驗結合起來。

將業務轉變為雲原生業務是首席執行官和領導團隊之間的對話,其中應包括首席信息官,因為它涉及業務運營的許多方面。該更改需要在該級別上得到大力支持。

要開始更改,建議圍繞特定產品創建燈塔實驗,以嘗試真正不同的東西,然後從中學到東西。然後就是適應這些學習。當您覺得自己的模型正在運行時,可以開始在組織內擴展該模型。

一個關鍵的考慮因素是組織的治理結構:誰可以對哪些主題做出決定?他們是否可以在適當的流程(例如DevOps或Agile)的支持下,在自己的團隊中快速實施這些決策?然後,在此之下,如何以足夠快的速度進行創新的雲提供商的適當技術支持它,從而為您提供功能上的提升以用於業務優勢?

雲計算效應

當企業開始實施基礎技術和不同的處理方式時,治理、財務、處理和技術方面的挑戰就出現了。

獲得最佳結果的方法不是推遲變更,而是接受變更作為新的工作方式。例如,如果企業想在面向消費者的平台上每天發起50次產品發布以激起市場,那麼領導該平台團隊的人需要擁有做出這些發布並做出響應的決策權。

該人員可能需要對該版本具有完全的堆棧控制權,這意味著與他們的業務創新團隊緊密相關或屬於其一部分。他們需要訪問技術創新小組的權限,並且需要開發團隊或DevOps團隊中的人員來實施這些更改。這幾乎肯定會破壞現有的治理結構,傳統的IT發布流程以及許多其他方面。毫無疑問:雲計算現代化對整個業務產生深遠的連鎖反應。

如果不加管理,所有這些影響都可以看作是非建設性的破壞:每個人都感到煩惱,並認為大型變革正在製造大量噪音,而企業卻拒絕變革。糟糕地執行此操作還有其他風險,如果沒有明確的策略,這樣做可能會花費太多錢,並且您可能會面臨運營或安全風險。

為了解決這個問題,重要的是要找到一個曾經經歷過的合作夥伴。他們可以幫助業務負責人,首席信息官和領導團隊了解他們將要面臨的挑戰的規模,影響以及規劃解決方案。這使得它對組織的其他部分非常透明,因此他們所有人都知道自己正在進入什麼領域。

英國石油公司是首席信息官將其原有公司轉變為完全現代化的IT組織方面的成功案例。這家跨國能源公司目前正進行大規模的數字化轉型,其目標是使IT組織現代化,變得更具創新性,採用敏捷方法並創建世界一流的工程團隊。

在過去的七年中,英國石油公司採取了“雲優先”的戰略。這涉及到在公共雲中構建全新的應用程序和工作負載,以及將現有應用程序和服務從其數據中心遷移到公共雲,對其進行現代化改造。

今年已經加速了許多公司向雲原生轉變的趨勢,並且這一趨勢將在人們進入2021年之前繼續保持下去。只要企業確切地知道誰來負責運營,了解風險並製定明確的戰略即可。

2027年全球智能家居市場規模將達2078.8億美元

據Verified Market Research最近發布了一份報告,2019年全球智能家居市場規模為808.3億美元,預計到2027年將達到2078.8億美元,從2020年到2027年的複合年增長率為13.52%。該報告所統計的智能家居包括照明控制、安全和訪問控制、HVAC控制、娛樂和其他控制等產品及應用。

全球智能家居市場概述

各種家用電器和設備中不斷發展的技術發展促進了智能家居市場的增長。家庭監控系統對於安全性問題的重要性日益增長,這是增加對智能和互聯家庭需求增長的關鍵因素。預計將引入新開發的創新無線技術,例如HVAC控制器、安全性和訪問調節器,以推動市場增長。在預測期內,耐用消費品和電子產品採用率的增長趨勢可能會提供新的機會。

除了家庭之外,許多企業正在將重點轉移到物聯網等先進技術上。預計這將在照明、HVAC、安全、醫療保健和娛樂領域提供新的機會。

同時,智能家居行業也面臨一定的限制和挑戰,這將阻礙整體智能家居市場的增長。安裝智能設備的高昂成本以及隱私問題和網絡攻擊的威脅可能會阻礙全球範圍內的整體增長。

加速邊緣計算的發展

5G的推出速度比之前任何一代無線技術都要快。 Omdia的研究顯示,5G訂閱量在20年第1季度增長了四倍,超過6400萬,並有望在2024年底達到100億。就用戶而言,這是4G採用率的4倍。

隨著5G實施的加速,它們帶來了數十億新的連接設備、數PB的額外網絡流量和數百萬個新的5G基站。目前全球約有7000萬個基站位置。

大多數人表示,他們預計在未來五年內,他們的天線數量將增加一倍或三倍。這相當於在未來五年內將有近1.5億個新的基站。

規模問題

運營商如何規劃基站的快速擴張?他們如何降低成本(運營成本和資本支出),將電力消耗降至最低,在無照明的數據中心部署零接觸解決方案,並減少硬件SKU和配置?作為第一步,運營商正在實行大部分的虛擬化操作。他們從4G核心開始,向無線接入網絡轉移——根據Omdia的調查,其中近80%將在2024年底實現虛擬化。

來源:Omdia

然而,運營商仍在努力解決一個問題,即如何部署一個高度分佈的邊緣,這個邊緣可能有數十萬個,甚至更多。這種分佈式邊緣必須是經濟實惠的,並且必須保持虛擬化、雲本機實現的靈活性和靈活性。邊緣計算位置還必須能夠支持5G設計所圍繞的應用:增強移動寬帶(eMBB)、大規模機器對機器通信(mMTC)和超可靠低延遲通信(URLLC)。雖然5G的實施最初集中在eMBB上,但這三種應用類型的網絡需求都在快速增長。

來源:Heavy Reading

用FPGA擴充解決方案

eMBB平台和商業應用程序的優勢是低成本的。因此,運營商正在擴充其基於商用現貨的、純軟件的解決方案,採用針對聯網和安全功能進行優化的現場可編程門陣列(FPGA)。這些定制平台利用(FPGA)技術實現更高的靈活性、靈活性和可擴展性。它們以更高的性能和更低的延遲來補充軟件解決方案,同時釋放出有限且昂貴的CPU核心。

為了滿足虛擬網絡功能(VNFs)的性能目標,運營商已經意識到數據平面加速(很可能是通過基於FPGA的SmartNIC)是必需的。基於FPGA的加速解決方案使運營商能夠實現更高的速度和更低的延遲,同時通過減少所需的CPU核數來降低功耗和基於服務器的資本支出。

有些網絡非常適合在基於x86的cpu上運行。其他測試壟斷了通用處理器,在此過程中浪費了資本支出、佔地面積和電力。從加速和卸載中獲益的工作負載,特別是在網絡邊緣,是與網絡和安全相關的任務,如交換、路由、操作處理、流管理、負載平衡和加密。示例工作負載包括開放式vSwitch(OVS)、5G/用戶平面功能(UPF)、段路由頭(SRH)、鍵值存儲(KVS)和覆蓋網絡隧道協議,如VXLAN和使用通用路由封裝(NVGRE)的網絡虛擬化。

性能、成本和標準化的交叉點

運營商網絡中使用特定的網絡硬件設備是可數的。然而,普通的舊COTS服務器,如普通的舊電話服務(POTS),同樣面臨著危險。利用COTS服務器和FPGAs為運營商提供他們想要的行業標準平台和他們必須具備的高性能。

日本居民用帶紅外傳感器的機器人來嚇跑野生動物

據外媒CNET報導,日本瀧川市的居民已開始利用一種“怪獸狼”機器人來嚇跑入侵的熊等野生動物,因為這些生物經常在居民區的垃圾桶裡覓食。通常情況下,該鎮會僱傭獵人捕捉熊並將其趕出城市範圍,但這次居民們更有創意地提出了一個嚇走熊的解決方案。

這款名為“怪獸狼”(Monster Wolf)的機器人是利用位於北海道製造公司Ohta Seiki的機器零件製作的。據SoraNews24報導,“怪獸狼”配備了紅外線傳感器,可以檢測到附近熊或其他野生動物的出沒。

SoraNews24報導稱,讓機器人驅趕像熊這樣的入侵野生動物的想法顯然在日本非常流行,因為已經有62個社區有自己版本的“怪獸狼”機器人在運作。

聯絡我們

地址
香港九龍觀塘鴻圖道57號南洋廣場1808室
Rm.1808, Nanyang Plaza, 57 Hung To Road., Kln. HK

電話
23091888

電郵
info@iothk.net